Pt and Pd 1,4-Shifts at the Edge of Dibenz[a,c]anthracene

Anupam Singh and Paul R. Sharp*
Department of Chemistry, University of Missouri, Columbia, Missouri 65211

Received January 9, 2006; E-mail: SharpP@missouri.edu
$\mathrm{C}-\mathrm{H}$ activation by transition metals is an active research area with increasing applications. ${ }^{1}$ Catalytic aromatic $\mathrm{C}-\mathrm{H}$ activation provides simple access to a range of compounds. In some cases, products are explained by metal shifts or migration where a carbonbound Rh or Pd exchanges positions with a nearby carbon-bound hydrogen (Scheme 1). ${ }^{2}$ We report here such shifts in isolated Pt and Pd complexes. ${ }^{3}$

The chemistry of the complexes is shown in Scheme 2. Colorless $\mathbf{1 a}(\mathrm{M}=\mathrm{Pt})$ and $\mathbf{1 b}(\mathrm{M}=\mathrm{Pd})$ are prepared by oxidative addition of 9-bromodibenz[a,c]anthracene ${ }^{4}$ to $\mathrm{ML}_{4}\left(\mathrm{~L}=\mathrm{PEt}_{3}\right) .{ }^{31} \mathrm{P}$ NMR data indicate a cis configuration around the metal centers. ${ }^{1} \mathrm{H}$ NMR spectra show a strongly shifted signal for the bay-proton in the 8 -position of the dibenz[$a, c]$ anthracene moiety (10.95 ppm for $\mathbf{1 a}$, 10.92 ppm for $\mathbf{1 b}$). Similar values have been reported for aromatic CH's in other square planar d^{8} metal complexes and are attributed to "pre-agostic" metal-CH interactions where the hydrogen atom is in close proximity to the metal. ${ }^{5}$ This situation is confirmed for H8 of $\mathbf{1}$ by X-ray crystal structure determinations (see below).

Heating sealed-tube toluene solutions of $\mathbf{1}$ at $160^{\circ} \mathrm{C}$ results first in isomerization to the trans complexes 2 (Scheme 2). The isomerization is accompanied by an increase in the $\mathrm{H} 8{ }^{1} \mathrm{H}$ NMR resonance from ~ 10.9 to 12.07 ppm for $\mathbf{2 a}$ and 11.63 ppm for $\mathbf{2 b}$. After the isomerization is nearly complete ($\sim 48 \mathrm{~h}$), the concentration of $\mathbf{2}$ begins to decrease with the concomitant appearance and increase of a new complex. For 2a the conversion is clean and follows first-order kinetics ($k=0.022 \mathrm{~h}^{-1}$). Isolation of the new complex at the end of the reaction (~ 5 days) reveals the 8 -subsituted ${ }^{6}$ dibenz $[a, c]$ anthracene complex 3a (Scheme 2), formed by a 1,4-shift or -migration of the Pt center. The ${ }^{31} \mathrm{P}$ NMR signal for $\mathbf{3}$ is a singlet, consistent with a trans isomer, and is at a slightly higher frequency from that for 2 . ${ }^{195} \mathrm{Pt}$ satellites indicate ${ }^{31} \mathrm{P}-{ }^{195} \mathrm{Pt}$ coupling nearly identical to that in $\mathbf{2}$. Most diagnostic of the structure of $\mathbf{3}$ is the appearance of a new singlet in the aromatic region of the ${ }^{1} \mathrm{H}$ NMR spectrum, resulting from the H 9 proton now at the position formally occupied by the Pt center. NMR data for 3b $(\mathrm{M}=\mathrm{Pd})$ are similar to those for the Pt complex, but its formation from $\mathbf{2 b}$ is slower (~ 10 days at $160^{\circ} \mathrm{C}$) and several other products are formed, including free PEt_{3} and a black precipitate assumed to be Pd .

The effect of solvents and additives on the $\mathbf{2 a} \rightarrow \mathbf{3 a}$ conversion was investigated. Clean conversion is observed in polar $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CF}_{3}$ at $160{ }^{\circ} \mathrm{C}$, with a rate constant $\left(0.071 \mathrm{~h}^{-1}\right) \sim 3$ times that in toluene. In DMF conversion occurs at $110-130^{\circ} \mathrm{C}$, but additional products form. $\mathrm{D}_{2} \mathrm{O}$ addition (25 mg) to a toluene reaction (0.7 mL) also gives clean conversion, with a rate constant $\left(160{ }^{\circ} \mathrm{C}, k=0.052\right.$ h^{-1}) ~ 2 times that in dry toluene. No deuterium incorporation into 3a or remaining 2a is detected. Finally, $10 \mathrm{~mol} \% \mathrm{free}^{\mathrm{PEt}} \mathrm{t}_{3}$ slowed the conversion in toluene at $160^{\circ} \mathrm{C}\left(k=0.0094 \mathrm{~h}^{-1}\right)$.

The solid-state structures of 1a, 2a, and $\mathbf{3 a}$ are shown in Figure 1. In 1a the aromatic system is strongly distorted from planarity and twisted up toward the Br atom. The twist angle, as measured by the torsion angle between the vectors from C9 to C14 and C2

Scheme 1

Scheme 2

to C 7 , is 20.5°. The distortion reduces the contact of the hydrogen atom at C 8 with the Pt center. The calculated $\mathrm{Pt}-\mathrm{H} 8$ distance is still quite small at $2.548 \AA$. An additional close $\mathrm{Pt}-\mathrm{H}$ contact (2.720 \AA) occurs between the Pt center and the peri-hydrogen atom at the 10-position of the dibenz[$a, c]$ anthracene moiety.
Isomerization to the trans structure $\mathbf{2}$ exchanges the Br atom with the more sterically demanding PEt_{3} ligand, sandwiching the aromatic system between the two trans- PEt_{3} ligands. This apparently reduces the aromatic system twist angle $\left(14.8^{\circ}\right)$ and forces a closer approach of H 8 to the Pt center. The calculated $\mathrm{Pt}-\mathrm{H} 8$ distance of $2.303 \AA$ in $\mathbf{2 a}$ is nearly $0.25 \AA$ shorter than that in $\mathbf{1 a}$. An increase of 1.2 ppm in the ${ }^{1} \mathrm{H}$ NMR shift of H 8 accompanies the shorter distance. The $\mathrm{Pt}-\mathrm{H} 10$ distance is also shortened ($2.597 \AA$) but by a smaller amount of $0.12 \AA$. The trans placement of the PEt_{3} ligands also results in a lengthening of the cis-to-carbon $\mathrm{Pt}-\mathrm{P}$ distance. Changing from a weak Br^{-}trans influence ${ }^{7}$ to a strong PEt_{3} trans influence increases the distance ($\mathrm{Pt}-\mathrm{P} 1$) from 2.2382 (8) \AA in 1a to 2.306(1) ($\mathrm{Pt}-\mathrm{P} 1$) and 2.317(1) $\AA(\mathrm{Pt}-\mathrm{P} 2)$ in 2a. The resulting stronger trans effect ${ }^{7}$ of PEt_{3} gives a more labile cis-to-carbon PEt_{3} in 2a than in 1a that may be important in the shift mechanism (see below). Similar changes are observed in the structures of the Pd complexes $\mathbf{1 b}$ and $\mathbf{2 b}$.
A comparison of the structures of 2a and 3a shows a slightly greater aromatic system twist in $\mathbf{3 a}$ and a slightly greater $\mathrm{Pt}-$ bayhydrogen atom distance. The $\mathrm{Pt}-\mathrm{H} 9$ distance in 3a is $2.354 \AA$, while the $\mathrm{Pt}-\mathrm{H} 8$ distance in $\mathbf{2 a}$ is $2.303 \AA$. The twist angle is 17.0° in 3a and 14.8° in 2a. In addition, there is no peri-hydrogen interaction with the Pt center in 3a as there is in 2a, and the PtH10 distance of $2.597 \AA$ in $\mathbf{2 a}$ has been replaced with a much longer $\mathrm{Pt}-\mathrm{H} 7$ distance of $2.828 \AA$. These features suggest a less constrained structure for $\mathbf{3}$ that may account for its greater stability over 2.

Figure 1. Solid-state structures of (a) 1a, (b) 2a, and (c) 3a, with 50% (30% 2a) probability ellipsoids. Hydrogen atoms are omitted from the PEt_{3} ligands.

Scheme 3

Several mechanistic pathways considered for 1,4- and 1,5-shifts and related arylation reactions are illustrated for an abbreviated 2 in Scheme $3 .{ }^{8}$ A reasonable first step is phosphine ligand substitution by the pre-agostic $\mathrm{C}-\mathrm{H}$, which moves into a full agostic interaction in \mathbf{A}. The slowing of the reaction with added PEt_{3} and the required cis-to-trans isomerization that gives a more labile PEt_{3} (see above) support this. Subsequent pathways may involve $\mathrm{C}-\mathrm{H}$
oxidative addition $(\mathbf{B}), \sigma$-bond metathesis (\mathbf{C}), deprotonation of an acidic agostic $\mathrm{C}-\mathrm{H}(\mathbf{D})$, or electrophilic attack (E). Pathways involving the formation of HBr can be eliminated by the lack of deuterium incorporation into $\mathbf{3 a}$ (or remaining $\mathbf{2 a}$) with added $\mathrm{D}_{2} \mathrm{O} .{ }^{9}$ This leaves the oxidative addition or σ-bond metathesis pathways. Either way, the increased rate with solvent polarity and polar additives suggests significant polarization in the process. For example, the σ-bond bond metathesis (\mathbf{C}) may have significant proton-transfer character. ${ }^{8 \mathrm{a}}$

In conclusion, we have demonstrated 1,4-shifts in isolated $\mathrm{Pt}(\mathrm{II})$ and $\mathrm{Pd}(\mathrm{II})$ complexes analogous to shifts postulated to occur in Rh- and Pd-catalyzed reactions. The process does not appear to involve acidic intermediates but is sensitive to the environmental polarity, suggesting an increase in polarity during the process.

Acknowledgment. We thank NSF for support (CHE-0406353), Dr. C. Barnes for X-ray work, and NSF (CHE-9221835 and -9531247) for NMR equipment funding.

Supporting Information Available: Experimental procedures and characterization; kinetic and structural data (PDF, CIF). This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Reviews: (a) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826834. (b) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, $1731-$ 1770. (c) Dyker, G. Angew. Chem., Int. Ed. 1999, 38, 1698-1712. (d) Guari, Y.; Sabo-Etienne, S.; Chaudret, B. Eur. J. Inorg. Chem. 1999, 1047-1055. (e) Shilov, A. E.; Shul'pin, G. B. Chem. Rev. 1997, 97, 2879-2932. (f) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc. Chem. Res. 1995, 28, 154-162. (g) Ryabov, A. D. Chem. Rev. 1990, 90, 403-424.
(2) Review: Ma, S.; Gu, Z. Angew. Chem., Int. Ed. 2005, 44, 7512-7517. Leading references. Pd: (a) Liu, Z.; Zhang, X.; Larock, R. C. J. Am. Chem. Soc. 2005, 127, 15716-15717. (b) Bour, C.; Suffert, J. Org. Lett. 2005, 7, 653-656. (c) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L. J. Am. Chem. Soc. 2005, 127, 4685-4696. (d) Karig, G.; Moon, M.-T.; Thasana, N.; Gallagher, T. Org. Lett. 2002, 4, 31153118. Rh: (e) Miura, T.; Sasaki, T.; Nakazawa, H.; Murakami, M. J. Am. Chem. Soc. 2005, 127, 1390-1391. (f) Yamabe, H.; Mizuno, A.; Kusama, H.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 3248-3249. (g) Shintani, R.; Okamoto, K.; Hayashi, T. J. Am. Chem. Soc. 2005, 127, 2872-2873. (h) Oguma, K.; Miura, M.; Satoh, T.; Nomura, M. J. Am. Chem. Soc. 2000, 122, 10464-10465.
(3) Stepwise base/acid-induced $\mathrm{Pd}^{3} \mathrm{sp}^{3}$-to-sp ${ }^{2}$ shift: Campora, J.; Lopez, J. A.; Palma, P.; Valerga, P.; Spillner, E.; Carmona, E. Angew. Chem., Int. Ed. 1999, 38, 147-151.
(4) (a) Harvey, R. G.; Aboshkara, E.; Pataki, J. Tetrahedron 1997, 53, 1594715956. (b) Duan, S.; Turk, J.; Speigle, J.; Corbin, J.; Masnovi, J.; Baker, R. J. J. Org. Chem. 2000, 65, 3005-3009.
(5) (a) Albinati, A.; Pregosin, P. S.; Wombacher, F. Inorg. Chem. 1990, 29, 1812-1817. (b) Lewis, J. C.; Wu, J.; Bergman, R. G.; Ellman, J. A. Organometallics 2005, 24, 5737-5746. (c) Wiedemann, S. H.; Lewis, J. C.; Ellman, J. A.; Bergman, R. G. J. Am. Chem. Soc. 2006, 128, 24522462.
(6) $\mathbf{3 a}$ is more accurately labeled as the 1 -substituted complex, but the 8 -substituted designation is retained for ease of comparison to 1a and 2a.
(7) Douglas, B. E.; McDaniel, D. H.; Alexander, J. J. Concepts and Models of Inorganic Chemistry, 3rd ed.; Wiley: New York, 1994; pp 522-526.
(8) Recent mechanistic findings and discussions: (a) Mota, A. J.; Dedieu, A.; Bour, C.; Suffert, J. J. Am. Chem. Soc. 2005, 127, 7171-7182. (b) Campeau, L. C.; Parisien, M.; Jean, A.; Fagnou, K. J. Am. Chem. Soc. 2006, 128, 581-590. (c) Masselot, D.; Charmant, J. P. H.; Gallagher, T. J. Am. Chem. Soc. 2006, 128, 694-695. (d) Davies, D. L.; Donald, S. M. A.; Macgregor, S. A. J. Am. Chem. Soc. 2005, 127, 13754-13755. (e) Garcia-Cuadrado, D.; Braga, A. A. C.; Maseras, F.; Echavarren, A. M. J. Am. Chem. Soc. 2006, 128, 1066-1067.
(9) $\mathrm{D}_{2} \mathrm{O}$ deprotonation and H/D exchange of an agostic $\mathrm{C}-\mathrm{H}$: (a) Vigalok, A.; Uzan, O.; Shimon, L. J. W.; Ben-David, Y.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 1998, 120, 12539-12544. (b) Sundermann, A.; Uzan, O.; Milstein, D.; Martin, J. M. L. J. Am. Chem. Soc. 2000, 122, 7095-7104.
JA060159X

